Cache Enhanced Split-Point-Based Alignment
Calculation

Tian Li
Chair of Process and Data Science
RWTH Aachen University
Aachen, Germany
tian.li@rwth-aachen.de

Abstract—The execution of (business) processes often deviates
from their behavioral specification (e.g., captured in a BPMN
model). Conformance checking techniques evaluate whether event
logs, i.e., data records capturing process behavior, and process
models conform to each other. As such, conformance checking
techniques provide insights into the correctness of the process
execution. Alignments are conformance checking artifacts used
to compute conformance metrics and, particularly, diagnostics.
Several alignment algorithms exist, yet most existing methods
solve an underlying search problem in which one typically
calculates a heuristic to guide the search. Recently, a promising
novel search approach was presented that reduces the overall
number of heuristics required to solve the alignment problem.
This paper extends this approach by proposing a caching
strategy that improves the overall search speed and efficiency. We
conducted a large set of experiments, confirming that the overall
search efficiency increases significantly due to our contribution.

Index Terms—Process Mining, Conformance Checking,
Alignments

I. INTRODUCTION

Conformance checking [1] has received increasing attention
in the field of Process Mining [2]]. Conformance checking
techniques measure the deviations between the executions of a
process (recorded in an event log) and its normative behavior
described by a behavioral specification (e.g., in BPMN [3]).
For instance, an event log can be ‘“replayed” on a given
process model to uncover potential problems in the process
execution. As such, the deviations exposed between the model
and the process execution can, for example, facilitate better
working instructions. Also, business process managers benefit
by determining whether the process is executed as planned.

Alignments [4] are fundamental conformance checking
artifacts, as they allow one to quantify how the event log
can be replayed on the process model. In case an observed
process execution is not described by the reference model,
alignments quantify the problems of the execution in great
detail. For example, alignments indicate whether the execution
of an observed activity was obsolete or missing. The de facto
strategy to compute alignments is solving the shortest path
problem. In the search, typically, the A* algorithm [5] is
adopted, i.e., a search strategy that requires a heuristic to guide
the search. The heuristic is computed by solving an (Integer)
Linear Program [6] ((I)LP) for every state visited.

Sebastiaan J. van Zelst

Fraunhofer Institute for Applied Information Technology FIT, Germany

RWTH Aachen University
Sankt Augustin, Germany
sebastiaan.van.zelst@fit.fraunhofer.de

In [7], a new search approach is proposed that reduces the
number of (I)LPs computed during the search. Although the
algorithm outperforms other approaches, it frequently restarts
from scratch, redundantly revisiting states in the state space
multiple times. Hence, in this paper, we extend the approach
presented in [[7] by adding a caching strategy that allows us to
reuse previously visited states in the search. We additionally
devise a restart strategy, which regularly clears the cache.

We conducted a large set of experiments with several
different real event logs and various process models. The
results of our experiments show that our proposed caching
strategy consistently improves the overall search efficiency by
reducing the number of states visited during the search.

The remainder of the paper is structured as follows: In
[Section II| and [Section III, we discuss related work and
introduce preliminary information, respectively. In
we present our main contribution. In we evaluate
the approach with various data sets and compare the results

with existing techniques. Finally, in we conclude
our work and suggest possible directions for future work.

II. RELATED WORK

In this section, we present related work in conformance
checking. A general overview of the process mining field is
out of this paper’s scope. Hence, we refer to [2].

Token-based replay [8]] is one of the early algorithms which
laid the foundation for conformance checking. The approach
replays traces in the event log on a given Petri net, and fitness
is calculated based on missing and remaining tokens, together
with generated and consumed tokens. However, the approach
does not exploit a path in the model to map the recorded
behavior to modeled behavior. As such, token-based replay
techniques are not helpful for diagnostic purposes.

The concept of alignment-based conformance checking
is introduced in [9], which provides a complete path for
every trace in the process model and explicitly shows where
deviations take place. The technique not only maps observed
behavior in the trace to modeled behavior in the model but also
finds a realizable behavioral execution sequence in the model.
In [10], the use of a synchronous product net based on a given
Petri net and a trace from an event log is proposed to compute
alignments. The authors show that computing an alignment is

© 2022 IEEE. Pre-print copy of the manuscript published in the Proceedings of the
2022 4" International Conference on Process Mining (ICPM 2022), ISBN 979-8-3503-9714-7

equivalent to solving the shortest path problem on the state
space of the synchronous product net. As a solution method,
in [10], the A* algorithm [5]] for shortest paths is proposed,
combined with a heuristic based on the marking equation
of Petri nets. To improve the scalability of this method, the
authors in [4] propose different tuning and parametrization
techniques, which show that efficiency gains can be achieved
by not scheduling certain types of states during the search.

In [7], van Dongen proposed an alternative search strategy.
Initially, an extended version of the marking equation is solved
(using (DLP). The solution may correspond to a realizable
path in the state space of the synchronous product net. The
algorithm traverses the state space by only considering states
that are described by the solution. Using this strategy, the
search can get stuck. When the search gets stuck, the algorithm
finds the maximum event index of the trace (encapsulated in
the synchronous product net) that has been explored and uses
it to further refine the extended marking equation. In [[L1], the
authors propose to derive structural or behavioral rules from
the process model so that the initial version of the extended
equation is more refined.

In this paper, we extend [7] by proposing a caching strategy
that enhances the efficiency of the underlying search. Our
approach can be combined with [[11].

III. BACKGROUND

In this section, we present basic concepts that support
the general readability of this paper, including mathematical
notation, event data, Petri nets and alignments.

A. Mathematical Concepts and Notation

We let N denote the set of natural numbers (including
0). A sequence o=(o(1),...,0(n)) of length neEN over
set X is a function o:{l,...,n}—X. The set of
all sequences over some set X is denoted as X*.
Given arbitrary c€X™*, |o| denotes the length of o
and we let #,(z)=|{i€{1,...,|o||o(i)=z}|. Further, given
ceX* and X'CX, we let o|x be the restriction of
o to X', eg, (a,b,¢b d)|apy=(a,b,b). The Parikh
vector of c€X*, where X={x1,xzo,...,24}, is a column
vector capturing the number of occurrences of a certain
element in o, ie., 0=(#,(x1),#5(x2),. ., #c(xK))T.
Given a tuple x=(x1,x2,...,2,)EX1 xXax...xX,, of size
neN, we let m;(x)=x; for 1<i<n. For sequences of
tuples, ie., for o = ((xi,23,...2L), (2%, 23,...22),...,
(T, 25, . 2l))e(Xix Xax. .. xX,)* (observe |o|=m),
we let 7i=(zl,z2,...2™) for 1<i<n. A multiset is a
collection of objects that allows for multiple occurrences of
its elements. For instance, m:[aQ7 b] contains two a elements,
one b element and zero c¢ elements. The set of all possible
multisets over X is written as M (X). Given me M(X), we
let m={zeX|m(z)>0}.

B. Event Data

The information systems used in organizations, e.g., ERP
and CRM systems, track the execution of (business) processes.

TABLE I: Example fragment of an event log.

Case-id Activity Time-stamp
484 receive return(a) 09/10/2021 10:27
485 receive return(a) 10/10/2021 10:13
485 get replacement(b) 11/10/2021 11:21
485 register return(d) 11/10/2021 11:21
485 inform progress to customers(e) 12/10/2021 10:51
484 inform progress to customers(e) 12/10/2021 11:14
485 send replacement(h) 12/10/2021 15:01

484 send repair(g) 12/10/2021 15:22

Fig. 1: Petri net Ni: A simplified product repair/replace process

As such, event logs can be extracted from these systems.
Consider depicting a (simplified) example event log.
Each row records the execution of an activity, e.g., the first row
of the table records the execution of the activity receive return
(short-hand notation a). Multiple activities are recorded for the
same instance of the process. The Case-id column tracks this
relationship, e.g., the oM and 3" row in the table refer to the
same process instance, identified by id 484. In this paper, we
only use the control-flow perspective of processes, i.e., the
sequential scheduling of the process activities in the context
of an instance of the process. We define event logs as follows.

Definition 1 (Event Log). Let X denote the universe of
process activities. An event log L is a multiset of sequences
of activities, i.e., LEM(X). A sequence o€L is a trace.

C. Petri Nets

Different process modeling languages exist, e.g., Business
Process Model and Notation (BPMN) [3], allowing one to
create a conceptual representation of a business process.
Most of these modeling languages can be translated into
Petri nets [12], i.e., a well-defined mathematical notation for
concurrent systems. Hence, we adopt Petri nets as a process
modeling formalism in this paper.

A Petri net is a bipartite graph consisting of places
(visualized as circles) and transitions (visualized as boxes).
Places are only connected to transitions and vice versa.
Consider which exemplifies a Petri net, based on the
(short-hand) activity labels presented in To represent
the state of a Petri net, we assign fokens to the places of the
net. For example, in[Fig. 1] there is one token assigned to place
p1. A precondition to fire a transition is that all of the places
connected to it by means of an incoming arc should contain a

token, e.g., in transition ¢; is the only transition that is
enabled, since place p; contains a token. When we fire ¢4, the
token from p; is removed and a token is produced in places
p2 and p3. We assume that firing transition ¢; emits activity a.
Some transitions are used for token-routing and do not emit
an activity, e.g., transition ¢7 in We formally define
(labeled) Petri nets as follows.

Definition 2 (Labeled Petri Nets). Let X denote the universe
of process activities and let T¢X. Let P denote a finite set of
places and let T denote a finite set of transitions s.t. PNT=(.
Let FC(PxT)U(T % P) be a set of directed arcs representing
the flow relation. Let ¢: T—XU{T} be a label function. A
labeled Petri net N is a quadruple N=(P, T, F, ().

Given net N=(P,T,F,{) and ze€PUT, we write
ox={ycPUT|(y,x)eF} and xze={yePUT|(z,y)EF}.
We refer to the aforementioned distribution of tokens
over places as a marking, which is a multiset of places,
e.g., the marking of N; (Fig. 1) is [p1]. Given a net
N=(P,T,F,¢) and marking meM(P), pair (N,m) is
a marked net. A transition {€7 is enabled in marking
m, written (N,m)[t), iff for each pcet, m(p)>0. If we
fire ¢ in marking m, we obtain marking m’'=(m—et)Wte.
We write this as (N, m) 5N (N,m'). A sequence of
transitions o€T™ of length n is a firing sequence of a

marked net (N, m), if there exist markings mq,ma, ..., my,,
st (N, m) 28 (N, my) 285 (N, ma). (N, m_y) 2
(N,m,). For this, we write (N,m) Z» (N,m,). We
let L(N,m,m)={ceT*|(N,m) Z» (N,m')} and

R(N,m)={m'eM(P)|JocT* ((N, m) s (N,m’))}.
The incidence matrix N of net N=(P, T, F,{) is a |P|x|T|
matrix s.t.:

—1 if (p,t)eF and (¢,p)¢F
N(p,t)=41 if (t,p)eF and (p,t)¢F (1)
0 otherwise
We let N~ denote the consumption matrix of N, where:
_ —1 if (p,t)eF and (t,p)¢F
N~ (p, t)Z{ () (t.p)¢ 2
0 otherwise

Let m,m'e M(P), let m,m’ denote two corresponding
column vectors representing markings m and m/, and let c€T™*
s.t. c€L(N,m, m’). The marking equation [12] states that
m-+N-G=m'|!| Further, let 01,02€T™* be two firing sequences
and let m,m’,m" st (N,m)Zs(N,m)Zs(N,m")
(ie., o01-:02€L(N,m,m")). The extended marking
equation [[7] states that (i m+N-<U_i+U_§)=T7{// and (ii)
m+N-a’i+N’-f62(1):Tr7/ Hence, the extended marking
equation additionally states (w.r.t. the conventional marking
equation) that the first element of oo needs to be enabled
after firing o1. Both equations generate a body of constraints

IWe assume the indexes of the elements in the vectors coincide with IN.
2Note that 1, represents the unit-vector for element z.

P1 (t1,>) D2

(a,>>)

t t t
(t2,>) . (t3,>) P4 (tg,>) .

b,>) b, >) e,>> >

>, th)

Fig. 2: Example Synchronous product net of Petri net N; (Fig. 1)
and the Petri net depicted in Note that all elements x€ PUT
of N1 have been relabeled to z’, e.g., p}, t], etc.

when replacing o (o1 and o9, respectively) by a vector
of variables & (1 and s, respectively) of size |T'|. Many
solutions to such a constraint body may exist. In case one
defines a cost function over the elements of 7', techniques
such as (I)LP [6] can be used to find an optimal solution.
However, it is not guaranteed that a solution found (optimal
or not), i.e., a variable assignment Z, corresponds to the
Parikh vector of any c€L(N,m,m’). In the remainder, we
refer to a solution that does correspond to the Parikh vector
of some o€L(N, m,m’) as a realizable solution.

Finally, we introduce the synchronous product net, which
combines two separate nets into one net. For example, consider
in which we depict an example synchronous product
net of Petri net Ny and the simple Petri net depicted
in Note that, in all elements z€ PUT of N;
have been relabeled to z’, e.g., p}, t}, etc. We formally define
the notion of a synchronous product net as follows.

Definition 3 (Synchronous Product Nets).

Let N=(P,T,F,¢) and N'=(P',T',F',l') be two labeled
Petri nets with P N P'=0 and T N T'=(. The synchronous
product net of N and N' is NQN'=(P® ,T® F® (®) where:
- P®=PUP’

- TO=(Tx{>NHU{>xTHU{(t,t")eTxT" | L(t)=L(t)}
CFO={(p, (L 1)EPEXT® | () FV (p,)eF }U{({t,¢)
P)ETEXP® | (t,p)eF V (', p)EF"}

-0 TOS(AU{THU{>) < (AU{TIU{>}) with (2(t,>
)=(4(t),>>) for t€T, (2(>,t")=(>,0'(t')) for '€T" and
L2t t)=(L(t), £ (")) for teT and t'eT’.

D. Alignments

Alignments relate a sequence of activities (i.e., a trace)
to a firing sequence in a Petri net. An example alignment

o a b b e >
T t1 to > ts ts

Fig. 3: An alignment of N; and trace (a,b, b, e); The 2" observed
activity b is obsolete and an activity g (described by tg) is missing.

®—> a —»O—> b —»O—> b —»O—> e
p1 4 p2 t p3 t3 P4 t

~O
233

Fig. 4: The trace net of trace (a,b, b, e)

is depicted in The alignment quantifies the trace
(a,b,b,e) in terms of Petri net Ny , i.e., the trace is
mapped to a firing sequence in the language of the net. In the
example, the trace is mapped to firing sequence (t1, to, t5, ts).
The individual elements of an alignment are moves, e.g.,
(a,t1) in Moves of the form (a,t) for a€¥ and t€T
(synchronous moves) indicate that observed behavior in the
trace can be mapped to the behavior described by the model.
Moves of the form (a,>>) for a€X (log moves) indicate
that the observed behavior cannot be mapped to the behavior
described by the model. Finally, moves of the form (>>,t)
for t€T (model moves) indicate that behavior is missing,
according to the model. We formally define alignments as
follows.

Definition 4 (Alignment). Let ¥ denote the universe of
activities, let N=(P,T,F,{) be a labeled Petri net (where
0: T—XU{7} and 7¢%) and let m,m'eM(P). Further, let
> ¢3UT. An alignment v of c€X* and N, conditional to m
and m/, is a sequence of moves, i.e., yE((ZU{>})x(TU{>
W) st (i) 75 (y)|s=0, (i) 75 () |r€L(N, m,m'), and (iii)
if for 1<i<|y|, v(i)=(a,t) with ac¥ and t€T, then a=/((t).
We let T'(o, N, m,m’) denote the set of all possible alignments
of o and N, conditional to m and m/'.

For a trace, model, and markings, multiple alignments
exist, e.g., replacing (>>,tg) by (>,t9) in
also yields an alignment. We prefer alignments that
describe the observed trace using a firing sequence closest
to the trace. As such, we associate a cost function
c: (BU{>})x(Tu{>})—N to the moves and aim to find

2l

any YEarg Min.y gy m ') i c(v'(i)). ie.. an optimal
alignment under cost function Zg The standard cost function
assigns cost 0 to synchronous moves (and moves (>>,t) with
£(t)=7), 1 to log and model moves and oo to (>>,>>).
Computing an optimal alignment is equivalent to solving the
shortest path problem (using cost functino ¢ as a distance
function) on the state space of the synchronous product net
of a trace net of the trace (e.g., see [Fig. 4] for trace (a, b, b, ¢))
and the Petri net modeling the process [10]].

IV. CACHE ENHANCED SPLIT-POINT-BASED ALIGNMENT
CALCULATION

In this section, we present our main contribution. We
briefly describe split-point-based alignment calculation in

Subsequently, we present our proposed caching
strategy in [Section IV-B| Finally, we present parameterization
and pruning techniques for our approach in [Section [V-C

A. Split-Point-Based Alignment Calculation

This section presents the conceptual basics of the split-
point-based alignment computation [7]. For the sake of brevity,
we provide an informal algorithmic sketch.

1) Compute Heuristic; An extension of the extended
marking equation is solved for the synchronous product
net SN [7, Definition 8]. The extension generalizes the
number of possible subsequences used in the equation
to compute a possibly realizable transition vector .

2) State-Space Traversal; The algorithm starts in the initial
marking m; of the synchronous product SN and
traverses its state-space S(SN). In general, a marking
m in S(SN) is considered by the search algorithm
if it, during the search, is reached by a sequence
of transitions o€T* (ie., (SN,m;)Z»(SN,m)) s.t.
Z—a>0. Markings eligible for consideration are referred
to as feasible markings, and all other markings are
referred to as infeasible. Prioritization of feasible
markings is based on the underlying alignment cost
function, i.e., the marking corresponding to the cheapest
currently known path is selected first.

There are two possible outcomes of the traversal (with
an associated resolution strategy):

a) During the search, we reach the final marking
my. We reconstruct the path ~&T™ s.t.
(SN, m;) (SN, my), ie, the optimal
alignment. In this case, ¥ 1is realizable and
is the Parikh vector of the optimal alignment ~.

b) The search gets stuck, i.e., Z is not realizable. In
this case, two possible resolution strategies apply:

i) If we can further split-up the extended marking
equation, we do so and restart the complete

procedure from step [I}
i) If no additional split can be defined, the
algorithm resorts back to the regular A*-search,
using the currently assessed state space as a

starting point

Consider [Fig. 3] in which we present a schematic
visualization of the algorithm. Observe that each iteration
starts from the unexplored state space, i.e., depicted in
Given the initial solution vector Z, i.e., based on the initial
solution to the extended marking equation, the algorithm
explores the state space, starting from m;. In the first search
iteration (Fig. 5b), the left-most child (visualized in red) is
infeasible, i.e., it is not described by #. The right-most child of
m; 1s feasible. However, after subsequent exploration of said
marking, the algorithm gets stuck. After revising the extended
marking equation, the 2-nd iteration of the algorithm gets stuck

3The algorithm maintains an Open and Closed set, which can directly be
adopted by conventional A*.

(a) Unexplored state space (b) 1-st search iteration gets
stuck

8
]
o o
N
o o
N
|)

i

N Ve

mg _‘.L/ my [J

(d) 3-rd iteration reaches final
marking

(c) 2-nd search iteration gets
stuck

Fig. 5: Schematic visualization of the state space traversal of
the conventional split-point-based alignment algorithm. In-between
each step, the algorithm restarts, i.e., any previous knowledge is
ignored.Black states are previously explored feasible states, blue
states are unexplored feasible states, red states are infeasible states.

again (Fig. 5c). Finally, the 3-rd iteration of the search does
allow us to reach the final marking.

The computation of the initial heuristic and corresponding
solution vector is defined in [7, Definition 8]. Conceptually,
the algorithm solves an (I)LP program based on the extended

marking equation (Equation 2)). The (DLP allows for using

multiple subsequences, i.e., k fragments, rather than just 2
as presented in The objective function minimizes
the cost function associated with the synchronous product net
(i.e., equivalent to the alignment cost function). If the search
gets stuck, the algorithm investigates the maximally explained
event of the trace in the current iteration of the search. For
example, if the algorithm applied on the synchronous product
net of never considered any marking that contains
place p4, the maximum explained event is the third event of
the trace (the 2-nd b activity, represented by (t3,>>)). In the
next iteration, the algorithm adds an additional firing sequence
fragment to its body of constraints and enforces that the
heuristic computed either uses (t4,>>), (¢4,1%) or (t4,t5). The
addition of the additional constraint forces the next heuristic to
be different from the previous solution. Suppose the maximally
explained event was already added to a heuristic of a previous
iteration. In that case, the algorithm keeps adding split-points
to other events that occur before the maximally explained
event. If no split-point can be added, the algorithm resorts
to classical A*.

B. Caching Infeasible Markings

Observe that the baseline algorithm, i.e., as described in

ection I1V-Al redundantly revisits several states in the state
space. In the example depicted in the three states

(tj7 >>>

(>, tm) (tn,tn)

My

Fig. 6: Unexplored cheaper sequences may lead to a marking in
closed set.

connected to m; are visited in every search. Therefore, we
propose a caching strategy that stores infeasible states. When
the search gets stuck, we revise the extended marking equation
similarly to [7]. However, we directly assess whether any
infeasible states of the previous iteration become feasible
using the heuristic computed in the current iteration. In the
remainder, we denote T; to represent the possibly realizable
solution vector computed in iteration ¢ of the algorithm (note
that i<|o|, i.e., we add at most |o| split-points when aligning
o). The initial solution computed is referred to as &g.

Main Search Procedure: Our algorithm maintains three sets,
i.e., O, C, and X, in which markings of the state space of SNV
are stored. Set O is the open set, containing all markings that
still need to be explored (visualized in blue in all upcoming
visualizations in this paper). Set C' is the closed set, containing
all markings that have been visited (visualized in black in
all upcoming visualizations in this paper). Finally, set X is
a cache set containing infeasible markings, i.e., infeasible
in the context of the current search iteration (visualized in
red). For every marking m, we additionally keep track of
the Parikh vectors of all possible firing sequences o of the
form (SN, m;) Z» (SN, m) that we have observed so far
during the search. Given meM(P), we refer to these vectors
as p(m)eP(NIT1). When we add a marking to the closed set,
we store the current iteration ¢ with it.

In the initial state of the algorithm, we have O={m;} and
X=C=0. As long as the open set is not empty, in any iteration
1, we perform the following procedure.

1) Obtain the marking m from O that represents the
currently known shortest path among all members of
O (typically, O is implemented as a priority queue).

2) For every m/ st. H€T((SN,m) 5 (SN,m’)) and
(m/,1)¢C, we add {g—1;|g€p(m)} to p(m’).

3) If any yep(m’) exists s.t. :E'i—gj’zﬁ, we add m’ to O,
else, we add it to X.

4) We add (m,i) to C.

Our main procedure re-assesses markings that have been
added to the closed set in a previous iteration of the search
(i.e., step [2| implies assessing any (m,j) with j<i). This is
required since the current path assessed may be cheaper than
the previously known path. Consider in which we
present a schematic example of this scenario. The shortest
path to reach my from m,; is via m,, yet, in the current
iteration, m,, is infeasible. Consequently, an alternative and
more expensive path is currently assessed for my.

mj

‘ Li;?:‘. t)
~. \A.
mg

(>>7tm)

>, 1)

Fig. 7: Schematic visualization of ignoring more expensive paths.
The move (>>,t;) does not need to be considered as it yields a
more expensive path to my

Reviving Cached States: Similar to the original algorithm,
our search procedure may get stuck, i.e., if solution Z; is
not realizable. In this case, we perform the same splitting
procedure as the original algorithm, i.e., we compute a new
solution ;11 using an enriched version of the extended
marking equation. However, rather than restarting the search,
we assess the markings in the cache X for feasibility under the
newly computed solution Z;;1. We move any marking meX
back to O iff 3jep(m)(Z;y1—7>0), i.e., any marking that is
on a possible realizable firing sequence is reconsidered. After
assessing all markings in the cache set, the aforementioned
Main Search Procedure is triggered again.

Fall-Back to A*: Finally, like the original algorithm, our
approach falls back to regular A* when the open set is empty,
and no further extension of the extended marking equation is
possible. However, in our search, i.e., as opposed to the regular
A* (and [7]]), whenever a state is visited that is already the
closed set, the state should be reconsidered.

C. Parameterization and Pruning

In this section, we present parameterization and pruning.

Clearing the Cache: Whereas our approach avoids
redundantly revisiting states during the alignment search, in
practical settings, the initially computed heuristic may guide
the search “in the wrong direction”. To this end, we define the
use of a reset-counter r€N. Given iteration ¢ of the algorithm,
whenever ¢ mod r = 0, we clear the closed, open, and cache
set and restart the algorithm with O={m;}. Observe that
for r=1, the algorithm is equal to the original algorithm as
presented in [7]]. Similarly, no restarts are executed for r=o0.

Ignoring Expensive Paths: Our basic scheme considers any
path leading to a reachable marking m’ (from some current
marking m). However, from marking m’ (i.e., a marking of
the SN), we are free to continue in the state space in any
possible way, i.e., this does not depend on the path that leads
to m'. Only the paths that yield the same costs to the currently
known best costs for m’ need to be considered. Consequently,
all previously stored paths are removed if a cheaper path to
m/ is discovered. Consider [Fig. 7} in which we schematically
visualize an example of such a situation. The path to my, via
m; needs not to be considered as it is more expensive than
the path via (>>,¢;). The same applies to adding states that
are already in the closed set, i.e., states of the form (m’, j)eC
with j<i. Only when the newly observed path is cheaper, we
reinsert the marking to O.

TABLE II: Experimental Setup

Parameter Value
Hospital Bill [16]
Event log Conformance Checking Chall.enge 2019 [17]
BPI Challenge 2020: International Declarations [18]
Inductive Miner & Noise threshold=0.05
Models Inductive Miner & Noise threshold=0.20
Inductive Miner & Noise threshold=0.80
Regular A* search (ras) [10]
Split-point based search (sps) [7]
) Split-point & naive caching search (spncs)
Allgn{nem Split-point & modified caching search (spsmc)
Algorithm Split-point & reset counter=1 search (spscl)

Split-point & reset counter=5 search (spsc5)

Ignoring Closed States: In the basic scheme presented in
we only ignore a visited state if (m,i)eC,
i.e., the marking is already closed and visited in the current
iteration 7 (possibly, only if it is also cheaper). If we ignore
any state present in C, i.e., any tuple of the form (m/,j)
with j<i, we further enhance the overall search efficiency.
However, optimality of the alignments computed cannot be

guaranteed (cf. [Fig. 6).
V. EVALUATION

In this section, we present the evaluation of our cache-
enhanced split-point based algorithm, which is implemented
in python, i.e., extending the process mining framework
pmdpy [13]E] We re-implemented the regular A* and split-
point-based approach to achieve a fair comparison.

A. Experimental Setup

We conducted experiments on ten different event logs to
analyze the performance of different algorithms. The main
difference between the selected logs is the average length of
the traces and the number of trace variants. Due to space
limitations, we report on a subset of the resultsE] For each
log, we mined four models with Inductive Miner (Infrequent)
algorithm [14], implemented in ProM [L15]. Specifically, the
noise threshold of the Inductive Miner is set to 0.05, 0.20,
0.40, and 0.80. Increasing the noise threshold filters out
more infrequent behaviors, resulting in models with fewer
transitions.

We summarize the experimental setup of the results
presented in In the spncs variant of the algorithm,
closed states are never reconsidered (as described in
[Section TV-C). Similarly, spsmc refers to revisiting closed
states when a shorter path is found. In all versions with restart,
ie., spscl, ..., spsc5, states in the closed set are re-openend
when required. We uploaded the code, event logs and models
to an elastic cloud server, and conducted all experiments in
single-threaded model[?]

4https://github.com/brucelit/State_space_traversal

3See https://drive.google.com/drive/folders/
11-y090-DuataYtJCLs YZxnzSDSgO83YO?usp=sharing for all results.

3.5 GHz Intel Xeon Platinum 8369HC CPU, 4 GB RAM and
40 GB Disk Space

https://github.com/brucelit/State_space_traversal
 https://drive.google.com/drive/folders/1l-y09o-DuataYtJCLsYZxnzSDSgO83YO?usp=sharing
 https://drive.google.com/drive/folders/1l-y09o-DuataYtJCLsYZxnzSDSgO83YO?usp=sharing

TABLE III: Results of total computation time and state space
traversed for Hospital Bill [16]

TABLE IV: Results of total computation time and state space
traversed for BPIC2020-International Declarations [[18]]

Algorithm Time State space explored Algorithm Time State space explored
total heuristic queue states arcs total heuristic queue states arcs
Model 0.05 Model 0.05
ras 1.4E+04 ras 1.3E+01 | 2.8E+05 1.4E+06
sps 1.0E+04 sps 2.3E+01 7.6E+05
spncs 3.1E+03 spncs 2.3E+01 9.4E+00 1.5E+05
spmcs 1.3E+04 3.2E+03 spmcs 5.6E+01 9.4E+00 6.8E+05
spscl 9.9E+03 = 4.9E+03 spscl 6.1E+01 2.3E+01 1.3E+01 1.6E+05 7.3E+05
spsc2 1.5E+04 9.1E+03 3.7E+03 84E+06 3.8E+07 spsc2 5.8E+01 23E+01 1.IE+01 1.6E+05 7.1E+05
spsc3 1.4E+04 9.0E+03 3.5E+03 7.8E+06 3.5E+07 spsc3 5.6E+01 [N2IBEFOIN 9.4E+00 1.5E+05 6.9E+05
spsc4 1.3E+04 = 84E+03 @ 3.2E+03 7.0E+06 3.0E+07 spsc4 5.6E+01 ~ 2.3E+01 9.3E+00 6.9E+05
spscS 1.3E+04 3.1E+03 | 6.7E+06 29E+07 spscS 5.6E+01 2.3E+01 [JOREH00% 6.9E+05
Model 0.20 Model 0.20
18E+02 SSEROGHINNERTN 89E01 [ISERIGIINIHEROT
sps 3.6E+02 1.7E+06 8.3E+06 sps 8.5E+05 5.6E+06
spncs spncs 1.1E+02 8.6E+01 6.3E+05
spmcs 7.3E+02 spmcs 3.1E+02 8.6E+01 3.9E+06
spscl 8.3E+02 3.4E+02 2.0E+02 1.7E+06 8.5E+06 spscl 3.9E+02 1.4E+02 8.7E+05 4.3E+06
spsc2 7.5E+02 33E+02 1.6E+02 1.7E+06 7.0E+06 spsc2 3.0E+02 9.2E+01 7.1E+05 | 3.3E+06
spsc3 7.5E+02 33E+02 1.5E+02 1.6E+06 6.8E+06 spsc3 3.1E+02 6.2E+05 4.0E+06
spsc4 74E+02 3.3E+02 | 1.5E+02 1.6E+06 6.8E+06 spsc4 3.1E+02 3.9E+06
spscs 73E+02 3.3E+02 | 1.5E+02 | 1.6E+06 6.8E+06 spscS 3.2E+02 4.0E+06
Model 0.80 Model 0.80
ras 3.4E+02 2.5E+06 ras 1.2E+01 1.2E+05 4.2E+05
sps 2.3E+02 7.0E+01 sps 1.4E+05
spncs 2.1E+02 7.5E+05 spncs 1.2E+05
spmcs 3.0E+02 5.5E+00 7.5E+05 spmcs 9.0E+01 7.1E+01 = 4.2E+00 4.0E+05
spscl 3.1E+02 1.4E+01 7.5E+05 | 2.7E+06 spscl 9.5E+01 7.1E+01 8.9E+00 4.0E+05
spsc2 3.0E+02 2.1E+02 7.2E+00 7.6E+05 2.4E+06 spsc2 9.0E+01 | 7.0E+01 @ 5.6E+00 1.3E+05 = 3.4E+05
spsc3 3.0E+02 2.1E+02 5.7E+00 7.5E+05 2.4E+06 spsc3 9.3E+01 7.2E+01 5.5E+00 1.2E+05 4.3E+05
spsc4 3.0E+02 2.1E+02 7.5E+05 | 2.4E+06 spsc4 9.1E+01 7.1E+01 | 4.4E+00 4.1E+05
spscS 3.0E+02 2.1E+02 7.5E+05 = 2.4E+06 spscS 9.2E+01 7.2E+01 | 4.4E+00 4.1E+05
B. Results to the frequent restart of sps, the state space is repeatedly

In this section, we present the results of the experiments
performed. We first assess the total computation time to align
all traces in the log, after which we focus on the state space
traversed regarding the number of states and arcs visited. Due
to space limitations, we only show the results of three event
logs (out of the ten considered) in Tables [[TT} [V} All obtained
results show similar trends to the results presented here. We
apply a blue-red color-coding scheme for each column to
visualize the respective magnitude of a particular trend within
a column. A blue color represents a value that is below
average, a red color indicates a value that is higher than
average.

Time Consumption: The total running time is
significantly reduced for spncs. As indicated, the computed
alignments are not always optimal. However, we hardly
observe non-optimal alignments in the experiments. For
example, for the event log Hospital Bill (Table), there
are 4 traces yielding non-optimal alignments, representing
0.5% of traces in the log. For spmcs, the overall running
time is slightly higher compared to spncs. We also observe
an increasing trend in performance when increasing the reset
counter value. Hence, we observe that using a cache set
without resets leads to the best time performance.

Search Efficiency: Another critical factor we measured
is the state-space traversal efficiency, which is represented by
the number of states and arcs traversed during the search. Due

explored. Its state-space traversal efficiency is usually the
worst among all experiments. In line with the results obtained
for the time performance, we observe that spncs performs
slightly better than spmcs.

Memory Efficiency: As our caching strategy requires
additional memory, i.e., storing Parikh vectors per marking in
the search space and keeping markings in the cache set after
recomputing the initial heuristic, we additionally measured
memory performance. In general, the memory used during the
search increases up to 20%, depending on the log and model.
The reason is that caching strategy forbids restart, and more
memory is allocated to store all known information of the state
space explored, i.e., all states visited and corresponding Parikh
vectors. For example, in Conformance Checking Challenge
2019 with model 0.05, the average memory for the split-
point-based approach is 186.75 MB, while the naive and
modified caching strategy consumed 201.7 MB and 223.55
MB, respectively.

VI. CONCLUSION

In this paper, we presented an extension of the existing split-
point-based alignment algorithm. Our approach introduces a
cache in which markings, rendered infeasible in the current
iteration of the search, are temporarily stored. The addition
of the cache reduces the number of redundantly revisiting
the same states in the state space. We conducted various

TABLE V: Results of total computation time and state space traversed
for Conformance Checking Challenge 2019

Algorithm Time State space explored

total heuristic queue states arcs

Model 0.05

6.4E+04

ras 7.9E+05
sps 1.27E+02

spncs 6.87E+01

2.90E+02

spmcs 3.00E+02

spscl 9.18E+02 7.27E+01 6.98E+02

spsc2 7.34E401 3.07E+02 1.1IE+05 1.4E+06
spsc3 5.47E+02 = 7.02E+01 3.60E+02 8.5E+04 1.0E+06
spsc4 5.93E+02 | 6.95E+01 3.86E+02 7.7E+04 9.5E+05
spsc5 547E+02 7.49E+01 3.44E+02 72E+04 8.8E+05
Model 0.20

ras 5.55E+01 | 5.33E+01 | 12E+04 6.3E+04
sps 1.75E+02 4.85E+01 3.9E+04 2.2E+05
spncs 5.50E+00

spmcs 5.60E+00

spscl 1.00E+02

spsc2 1.55E+02 6.12E+01 ~ 4.71E+01 9.0E+04 4.4E+05
spsc3 1.26E+02 5.88E+01 3.40E+01 6.6E+04 3.3E+05
spsc4 7.92E+01 4.06E+01 1.96E+01 4.0E+04 2.0E+05
spsc5 5.76E+01 4.02E+01 1.05E+01 1.8E+04 1.0E+05
Model 0.80

ras 1.00E-01 1.9E+03 5.0E+03
sps 1.80E+00

spncs 2.20E+00 2.10E+00

spmcs 3.2E+03
spscl 1.60E+00 1.20E+00 2.00E-01

spsc2 1.40E+00 1.00E-01 1.7E+03 4.9E+03
spsc3 1.50E+00 1.20E+00 1.00E-01 1.5E+03 4.3E+03
spsc4 1.00E-01 1.4E+03 4.0E+03
spsc5 1.00E-01 1.3E+03 3.6E+03

experiments with real-life event logs and evaluated the results
with existing techniques. With a compromise on memory
efficiency to store all visited states without restart, our
proposed caching strategy aids the split-point-based algorithm
to traverse state space more efficiently. Due to this efficiency
gain, the overall time efficiency of alignment calculation is
significantly improved.

Future Work: We aim to extend our current work as
follows. During the search, some states remain in the cache
during various subsequent iterations. As such, we aim to
develop dynamic caching to reduce the memory consumption
of the cache. We further aim to apply bidirectional search
based on the extended marking equation.

REFERENCES

[1] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich,
Conformance Checking - Relating Processes and Models.
Springer, 2018.

[2] W. M. P. van der Aalst, Process Mining - Data Science
in Action, Second Edition. Springer, 2016.

[3] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics
and analysis of business process models in BPMN,” Inf.
Softw. Technol., vol. 50, no. 12, pp. 1281-1294, 2008.

[4] S. J. van Zelst, A. Bolt, and B. F. van Dongen,
“Computing alignments of event data and process
models,” Trans. Petri Nets Other Model. Concurr.,
vol. 13, pp. 1-26, 2018.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,”
IEEE transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100-107, 1968.

[6] A. Schrijver, Theory of linear and integer programming,
ser. Wiley-Interscience series in discrete mathematics and
optimization. Wiley, 1999.

[71 B. FE. van Dongen, “Efficiently computing alignments
- using the extended marking equation,” in BPM
2018, Sydney, NSW, Australia, September 9-14, 2018,
Proceedings, M. Weske, M. Montali, I. Weber, and
J. vom Brocke, Eds., vol. 11080. Springer, 2018, pp.
197-214.

[8] A. Rozinat and W. M. P. van der Aalst, “Conformance
checking of processes based on monitoring real
behavior,” Inf. Syst., vol. 33, no. 1, pp. 64-95, 2008.

[91 R. P. J. C. Bose and W. M. P. van der Aalst,
“Trace alignment in process mining: Opportunities for
process diagnostics,” in BPM 2010, Hoboken, NJ,
USA, September 13-16, 2010. Proceedings, R. Hull,
J. Mendling, and S. Tai, Eds., vol. 6336. Springer, 2010,
pp- 227-242.

[10] A. Adriansyah, “Aligning observed and modeled
behavior (Ph. D. thesis),” Eindhoven University of
Technology, 2014.

[11] A. Syamsiyah and B. F. van Dongen, “Improving
alignment computation using model-based
preprocessing,” in ICPM 2019, Aachen, Germany,
June 24-26, 2019. 1EEE, 2019, pp. 73-80.

[12] T. Murata, “Petri nets: Properties, analysis and
applications,” Proceedings of the IEEE, vol. 77, no. 4,
pp- 541-580, 1989.

[13] A. Berti, S. J. van Zelst, and W. M. P. van der

Aalst, “Process mining for python (pm4py): Bridging

the gap between process- and data science,” CoRR, vol.

abs/1905.06169, 2019.

S.J.J. Leemans, D. Fahland, and W. M. P. van der Aalst,

“Discovering block-structured process models from event

logs containing infrequent behaviour,” in BPM 2013

International Workshops, Beijing, China, August 26,

2013, Revised Papers, ser. Lecture Notes in Business

Information Processing, N. Lohmann, M. Song, and

P. Wohed, Eds., vol. 171. Springer, 2013, pp. 66-78.

[15] E. Verbeek, J. C. A. M. Buijs, B. F. van Dongen,
and W. M. P. van der Aalst, “Prom 6: The process
mining toolkit,” in Proceedings of the Business Process
Management 2010 Demonstration Track, Hoboken, NJ,
USA, September 14-16, 2010, M. L. Rosa, Ed., vol. 615.
CEUR-WS.org, 2010.

[16] F. Mannhardt, “Hospital billing - event log,” Aug. 2017.

[17] J. Munoz-Gama, R. de la Fuente R., M. Sepilveda,
and R. Fuentes, “Conformance checking challenge 2019
(cccl9),” Feb. 2019.

[18] B. F. van Dongen, “BPI Challenge 2020: International
Declarations,” 3 2020.

(14]

	Introduction
	Related work
	Background
	Mathematical Concepts and Notation
	Event Data
	Petri Nets
	Alignments

	Cache Enhanced Split-Point-Based Alignment Calculation
	Split-Point-Based Alignment Calculation
	Caching Infeasible Markings
	Parameterization and Pruning

	Evaluation
	Experimental Setup
	Results

	Conclusion

